

2

GP
GL

Mar

Taitu

22.1 Int

This
gene
techn
that
inde
of ea

Figu
spher
partic

22

PGPU Cl
LSL, Ope

rco Fratarca

us Software It

roduction

s chapter prov
eric programm
nologies are
simulates a p
rs, and planes
ach different t

ure 22.1. A pie
re at interactiv
cles.

loth Sim
enCL, a

angeli

Italia

n

vides a comp
ming on the G
used for imp

piece of cloth
s (see Figure
technology in

ece of cloth fal
ve rates. The c

mulatio
nd CUD

parison study
GPU, namely
plementing an
h colliding wi
22.1). We ass

n terms of usa

lls under the in
loth is compos

on Using
DA

y between thr
y, GLSL, CU
n interactive
ith simple pri
sess the advan
ability and per

nfluence of gra
sed of 780,000

g

ree popular p
UDA, and Ope

physically-ba
imitives like s
ntages and th
rformance.

avity while co
0 springs conn

platforms for
enCL. These
ased method
spheres, cyl-

he drawbacks

olliding with a
necting 65,000

365

366 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

Figure 22.2. A 4 4 grid of particle vertices and the springs for one of the particles.

22.2 Numerical Algorithm

This section provides a brief overview of the theory behind the algorithm used in
computing the cloth simulation. A straightforward way to implement elastic net-
works of particles is by using a mass-spring system. Given a set of evenly spaced
particles on a grid, each particle is connected to its neighbors through simulated
springs, as depicted in Figure 22.2. Each spring applies to the connected particles
a force springF :

 spring k b 0F l l x ,

where l represents the current length of the spring (i.e., its magnitude is the dis-
tance between the connected particles), 0l represents the rest length of the spring
at the beginning of the simulation, k is the stiffness constant, x is the velocity of
the particle, and b is the damping constant. This equation means that a spring
always applies a force that brings the distance between the connected particles
back to its initial rest length. The more the current distance diverges from the rest
length, then the larger is the applied force. This force is damped proportionally to
the current velocity of the particles by the last term in the equation. The blue
springs in Figure 22.2 simulate the stretch stress of the cloth, while the longer red
ones simulate the shear and bend stresses.

 For each particle, the numerical algorithm that computes its dynamics is
schematically illustrated in Figure 22.3. For each step of the dynamic simulation,

(i, j)

(i, j + 1)

(i + 1, j − 1)

(i − 2, j − 2)

22.2 Numerical Algorithm 367

Figure 22.3. Numerical algorithm for computing the cloth simulation.

the spring forces and other external forces (e.g., gravity) are applied to the parti-
cles, and then their dynamics are computed according to the Verlet method [Mül-
ler 2008] applied to each particle in the system through the following steps:

1. Δ Δt t t t t x x x .
2. ,t t t mx F x x .
3. 2Δ 2 Δ Δt t t t t t t x x x x .

Here, tF is the current total force applied to the particle, m is the particle mass,
 tx is its acceleration, tx is the velocity, tx is the current position, and Δt is

the time step of the simulation (i.e., how much time the simulation is advanced
for each iteration of the algorithm).
 The Verlet method is very popular in real-time applications because it is
simple and fourth-order accurate, meaning that the error for the position compu-
tation is 4ΔO t . This makes the Verlet method two orders of magnitude more
precise than the explicit Euler method, and at the same time, it avoids the compu-

Initial state

Compute forces F(t):
springs and gravity

Compute acceleration

Compute new state

Update state

Handle collisions

 t t mx F

 0 0,t tx x

 Δ , Δt t t t x x

 , Δ , Δt t t t t t← x x x x

368 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

tational cost involved in the Runge-Kutta fourth-order method. In the Verlet
scheme, however, velocity is only first-order accurate; in this case, this is not
really important because velocity is considered only for damping the springs.

22.3 Collision Handling

Generally, collision handling is composed of two phases, collision detection and
collision response. The outcome of collision detection is the set of particles that
are currently colliding with some other primitive. Collision response defines how
these collisions are solved to bring the colliding particles to a legal state (i.e., not
inside a collision primitive). One of the key advantages of the Verlet integration
scheme is the easiness of handling collision response. The position at the next
time step depends only on the current position and the position at the previous
step. The velocity is then estimated by subtracting one from the other. Thus, to
solve a collision, it is sufficient to modify the current position of the colliding
particle to bring it into a legal state, for example, by moving it perpendicularly
out toward the collision surface. The change to the velocity is then handled au-
tomatically by considering this new position. This approach is fast and stable,
even though it remains valid only when the particles do not penetrate too far.
 In our cloth simulation, as the state of the particle is being updated, if the
collision test is positive, the particle is displaced into a valid state. For example,
let’s consider a stationary sphere placed into the scene. In this simple case, a col-
lision between the sphere and a particle happens when the following condition is
satisfied:

 Δ 0t t r x c ,

where c and r are the center and the radius of the sphere, respectively. If a colli-
sion occurs, then it is handled by moving the particle into a valid state by moving
its position just above the surface of the sphere. In particular, the particle should
be displaced along the normal of the surface at the impact point. The position of
the particle is updated according to the formula

Δ

Δ

t t

t t

x c

d
x c

,

 Δt t r x c d ,

where Δt t x is the updated position after the collision. If the particle does not
penetrate too far, d can be considered as an acceptable approximation of the
normal to the surface at the impact point.

22.4 CPU Implementation 369

22.4 CPU Implementation

We first describe the implementation of the algorithm for the CPU as a reference
for the implementations on the GPU described in the following sections.
 During the design of an algorithm for the GPU, it is critical to minimize the
amount of data that travels on the main memory bus. The time spent on the bus is
actually one of the primary bottlenecks that strongly penalize performance [Nvid-
ia 2010]. The transfer bandwidth of a standard PCI-express bus is 2 to 8 GB per
second. The internal bus bandwidth of a modern GPU is approximately 100 to
150 GB per second. It is very important, therefore, to minimize the amount of
data that travels on the bus and keep the data on the GPU as much as possible.
 In the case of cloth simulation, only the current and the previous positions of
the particles are needed on the GPU. The algorithm computes directly on GPU
the rest distance of the springs and which particles are connected by the springs.
The state of each particle is represented by the following attributes:

1. The current position (four floating-point values).
2. The previous position (four floating-point values).
3. The current normal vector (four floating-point values).

 Even though the normal vector is computed during the simulation, it is used
only for rendering purposes and does not affect the simulation dynamics. Here,
the normal vector of a particle is defined to be the average of the normal vectors
of the triangulated faces to which the particle belongs. A different array is created
for storing the current positions, previous positions, and normal vectors. As ex-
plained in later sections of this chapter, for the GPU implementation, these at-
tributes are loaded as textures or buffers into video memory. Each array stores
the attributes for all the particles. The size of each array is equal to the size of an
attribute (four floating-point values) multiplied by the number of particles. For
example, the position of the i-th particle ip is stored in the positions array and
accessed as follows:

i pos vec3(in_pos[i * 4], in_pos[i * 4 + 1], in_pos[i * 4 + 2],

 in_pos[i * 4 + 3])

 The cloth is built as a grid of n n particles, where n is the number of parti-
cles composing one side of the grid. Regardless of the value of n, the horizontal
and the vertical spatial dimensions of the grid are always normalized to the range

370 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

 0,1 . A particle is identified by its array index i, which is related to the row and
the column in the grid as follows:

 ,

mod
i

i

row i n

col i n

 .

From the row and the column of a particle, it is easy to access its neighbors by
simply adding an offset to the row and the column, as shown in the examples in
Figure 22.2.

 The pseudocode for calculating the dynamics of the particles in an n n grid
is shown in Listing 22.1. In steps 1 and 2, the current and previous positions of
the the i-th particle are loaded in the local variables t

ipos and 1t
i
pos , respectively,

and then the current velocity t
ivel is estimated in step 3. In step 4, the total force

iforce is initialized with the gravity value. Then, the for loop in step 5 iterates
over all the neighbors of ip (steps 5.1 and 5.2), spring forces are computed (steps
5.3 to 5.5), and they are accumulated into the total force (step 5.6). Each neigh-
bor is identified and accessed using a 2D offset offset offset,x y from the position of

ip within the grid, as shown in Figure 22.2. Finally, the dynamics are computed
in step 6, and the results are written into the output buffers in steps 7 and 8.

for each particle ip
1. t

i i tpos x
2. 1 Δt

i i t t pos x
3. 1 Δt t t

i i i t vel pos pos
4. iforce = (0, -9.81, 0, 0)
5. for each neighbor offset offset,i irow x col y
 if offset offset,i irow x col y is inside the grid
 5.1. neigh offset offset*i ii row y n col x
 5.2. neigh neigh

t tpos x
 5.3. rest offset offset,d x y n
 5.4. curr neigh

t t
id pos pos

 5.5. springforce = neigh
curr rest

neigh

t t
i t

it t
i

d d k b

pos pos
vel

pos pos

 5.6. iforce += springforce
6. 1t

i
pos = 12 t t

i i
 pos pos + 2Δi m tforce

7. 1t
i it x pos

8. Δ t
i it t x pos

Listing 22.1. Pseudocode to compute the dynamics of a single particle i belonging to the n n
grid.

22.5 GPU Implementations 371

22.5 GPU Implementations

The different implementations for each GPGPU computing platform (GLSL,
OpenCL, and CUDA) are based on the same principles. We employ the so-called
“ping-pong” technique that is particularly useful when the input of a simulation
step is the outcome of the previous one, which is the case in most physically-
based animations. The basic idea is rather simple. In the initialization phase, two
buffers are loaded on the GPU, one buffer to store the input of the computation
and the other to store the output. When the computation ends and the output
buffer is filled with the results, the pointers to the two buffers are swapped such
that in the following step, the previous output is considered as the current input.
The results data is also stored in a vertex buffer object (VBO), which is then used
to draw the current state of the cloth. In this way, the data never leaves the GPU,
achieving maximal performance. This mechanism is illustrated in Figure 22.4.

Figure 22.4. The ping-pong technique on the GPU. The output of a simulation step be-
comes the input of the following step. The current output buffer is mapped to a VBO for
fast visualization.

Buffer 0
 tx Δt tx

GPU
computation

Buffer 1

Vertex
Buffer
ObjectGPU

Input Output

1. Odd simulation steps (ping...)

Buffer 1
 tx Δt tx

GPU
computation

Buffer 0

Vertex
Buffer
Object GPU

Output Input

2. Even simulation steps (...pong)

Draw

Draw

372 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

22.6 GLSL Implementation

This section describes the implementation of the algorithm in GLSL 1.2. The
source code for the vertex and fragment shaders is provided in the files ver-
let_cloth.vs and verlet_cloth.fs, respectively, on the website. The position
and velocity arrays are each stored in a different texture having n n dimensions.
In such textures, each particle corresponds to a single texel. The textures are up-
loaded to the GPU, and then the computation is carried out in the fragment
shader, where each particle is handled in a separate thread. The updated state
(i.e., positions, previous positions, and normal vectors) is written to three distinct
render targets.
 Frame buffer objects (FBOs) are employed for efficiently storing and access-
ing the input textures and the output render targets. The ping-pong technique is
applied through the use of two frame buffer objects, FBO1 and FBO2. Each FBO
contains three textures storing the state of the particles. These three textures are
attached to their corresponding FBOs as color buffers using the following code,
where fb is the index of the FBO and texid[0], texid[1], and texid[2] are
the indices of the textures storing the current positions, the previous positions,
and the normal vectors of the particles, respectively:

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo->fb);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, texid[0], 0);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHMENT1_EXT, GL_TEXTURE_2D, texid[1], 0);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHMENT2_EXT, GL_TEXTURE_2D, texid[2], 0);

 In the initialization phase, both of the FBOs holding the initial state of the
particles are uploaded to video memory. When the algorithm is run, one of the
FBOs is used as input and the other one as output. The fragment shader reads
the data from the input FBO and writes the results in the render targets of the
output FBO (stored in the color buffers). We declare the output render targets by
using the following code, where fb_out is the FBO that stores the output:

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb_out);

GLenum mrt[] = {GL_COLOR_ATTACHMENT0_EXT,

 GL_COLOR_ATTACHMENT1_EXT, GL_COLOR_ATTACHMENT2_EXT};

glDrawBuffers(3, mrt);

22.7 CUDA Implementation 373

In the next simulation step, the pointers to the input and output FBOs are
swapped so that the algorithm uses the output of the previous iteration as the cur-
rent input.
 The two FBOs are stored in the video memory, so there is no need to upload
data from the CPU to the GPU during the simulation. This drastically reduces the
amount of data bandwidth required on the PCI-express bus, improving the per-
formance. At the end of each simulation step, however, position and normal data
is read out to a pixel buffer object that is then used as a VBO for drawing pur-
poses. The position data is stored into the VBO directly on the GPU using the
following code:

glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
glBindBuffer(GL_PIXEL_PACK_BUFFER, vbo[POSITION_OBJECT]);
glReadPixels(0, 0, texture_size, texture_size,
 GL_RGBA, GL_FLOAT, 0);

First, the color buffer of the FBO where the output positions are stored is select-
ed. Then, the positions’ VBO is selected, specifying that it will be used as a pixel
buffer object. Finally, the VBO is filled with the updated data directly on the
GPU. Similar steps are taken to read the normals’ data buffer.

22.7 CUDA Implementation

The CUDA implementation works similarly to the GLSL implementation, and
the source code is provided in the files verlet_cloth.cu and ver-
let_cloth_kernel.cu on the website. Instead of using FBOs, this time we use
memory buffers. Two pairs of buffers in video memory are uploaded into video
memory, one pair for current positions and one pair for previous positions. Each
pair comprises an input buffer and an output buffer. The kernel reads the input
buffers, performs the computation, and writes the results in the proper output
buffers. The same data is also stored in a pair of VBOs (one for the positions and
one for the normals), which are then visualized. In the beginning of the next it-
eration, the output buffers are copied in the input buffers through the
cudaMemcpyDeviceToDevice call. For example, in the case of positions, we
use the following code:

cudaMemcpy(pPosOut, pPosIn, mem_size, cudaMemcpyDeviceToDevice);

It is important to note that this instruction does not cause a buffer upload from
the CPU to the GPU because the buffer is already stored in video memory. The

374 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

output data is shared with the VBOs by using graphicsCudaResource objects,
as follows:

// Initialization, done only once.
cudaGraphicsGLRegisterBuffer(&cuda_vbo_resource, gl_vbo,
 cudaGraphicsMapFlagsWriteDiscard);

// During the algorithm execution.
cudaGraphicsMapResources(1, cuda_vbo_resource, 0);
cudaGraphicsResourceGetMappedPointer((void **) &pos,
 &num_bytes, cuda_vbo_resource);
executeCudaKernel(pos, ...);
cudaGraphicsUnmapResources(1, cuda_vbo_resource, 0);

In the initialization phase, we declare that we are sharing data in video memory
with OpenGL VBOs through CUDA graphical resources. Then, during the exe-
cution of the algorithm kernel, we map the graphical resources to buffer pointers.
The kernel computes the results and writes them in the buffer. At this point, the
graphical resources are unmapped, allowing the VBOs to be used for drawing.

22.8 OpenCL Implementation

The OpenCL implementation is very similar to the GLSL and CUDA implemen-
tations, except that the data is uploaded at the beginning of each iteration of the
algorithm. At the time of this writing, OpenCL has a rather young implementa-
tion that sometimes leads to poor debugging capabilities and sporadic instabili-
ties. For example, suppose a kernel in OpenCL is declared as follows:

__kernel void hello(__global int *g_idata);

Now suppose we pass input data of some different type (e.g., a float) in the fol-
lowing way:

float input = 3.0F;
cfloatlSetKernelArg(ckKernel, 0, sizeof(float), (void *) &input);
clEnqueueNDRangeKernel(cqQueue, ckKernel, 1, NULL,
 &_szGlobalWorkSize, &_szLocalWorkSize, 0, 0, 0);

When executed, the program will fail silently without giving any error message
because it expects an int instead of a float. This made the OpenCL implemen-
tation rather complicated to develop.

22.9 Results 375

22.9 Results

The described method has been implemented and tested on two different ma-
chines:

■ A desktop PC with an Nvidia GeForce GTS250, 1GB VRAM and a proces-
sor Intel Core i5.

■ A laptop PC with an Nvidia Quadro FX 360M, 128MB VRAM and a proces-
sor Intel Core2 Duo.

We collected performance times for each GPU computing platform, varying the
numbers of particles and springs, from a grid resolution of 32 32 (1024 particles
and 11,412 springs) to 256 256 (65,536 particles and approximately 700,000
springs). Numerical results are collected in the plots in Figures 22.5 and 22.6.
 From the data plotted in Figures 22.5 and 22.6, the computing superiority of
the GPU compared with the CPU is evident. This is mainly due to the fact that
this cloth simulation algorithm is strongly parallelizable, like most of the particle-
based approaches. While the computational cost on the CPU keeps growing line-
arly with the number of particles, the computation time on the GPU remains rela-
tively low because the particle dynamics are computed in parallel. On the
GTS250 device, this leads to a performance gain ranging from 10 to 40 times,
depending on the number of particles.
 It is interesting to note that in this case, GLSL has a much better performance
than CUDA does. This can be explained by considering how the memory is ac-
cessed by the GPU kernels. In the GLSL fragment program, images are em-
ployed to store particle data in texture memory, while in CUDA and OpenCL,
these data is stored in the global memory of the device. Texture memory has two
main advantages [Nvidia 2010]. First, it is cached, and thus, video memory is
accessed only if there is a cache miss. Second, it is built in such a way as to op-
timize the access to 2D local data, which is the case because each particle corre-
sponds to a pixel, and it must have access to the positions of its neighbors, which
are stored in the immediately adjacent texture pixels. Furthermore, the results in
GLSL are stored in the color render targets that are then directly mapped to
VBOs and drawn on the screen. The data resides in video memory and does not
need to be copied between different memory areas. This makes the entire process
extremely fast compared with the other approaches.
 The plots also highlight the lower performance of OpenCL compared with
CUDA. This difference is caused by the fact that it has been rather difficult to
tune the number of global and local work items due to causes requiring further

376 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

Figure 22.5. Computation times measured on different computation platforms using a
GeForce GTS 250 device (16 computing units, 128 CUDA cores).

Figure 22.6. Computation times measured on different computation platforms using a
Quadro FX 360M device (2 computing units, 16 CUDA cores).

1.57
0.25

1.02 0.70 0.28
0.99 0.71

6.48

25.5

0.23
1.58

0.69 0.17

4.10

1.36

99.8

0

5

10

15

20

25

30

35
T

im
e

(m
s)

CPU GLSL OCL CUDA CPU GLSL OCL CUDA CPU GLSL OCL CUDA CPU GLSL OCL CUDA

1024 particles

11,412 springs

4096 particles

47,380 springs

16,384 particles

193,044 springs

65,536 particles

779,284 springs

0

10

20

30

40

50

60

70

T
im

e
(m

s)

2.54
0.30

1.66 0.81 0.30

9.78

3.93

10.4

42.5

0.26

10.1

3.32
0.29

34.1

11.0

160

CPU GLSL OCL CUDA CPU GLSL OCL CUDA CPU GLSL OCL CUDA CPU GLSL OCL CUDA

1024 particles

11,412 springs

4096 particles

47,380 springs

16,384 particles

193,044 springs

65,536 particles

779,284 springs

22.10 Future Work 377

investigation. OpenCL is a very young standard, and both the specification and
the driver implementation are likely to change in the near future in order to avoid
such instabilities.
 The GLSL program works on relatively old hardware, and different from
CUDA, it does not require Nvidia hardware. CUDA on the other hand, is a more
flexible architecture that has been specifically devised for performing computing
tasks (not only graphics, like GLSL), which is easier to debug and provides ac-
cess to hardware resources, like the shared memory, allowing for a further boost
to the performance. OpenCL has the same features as CUDA, but its implementa-
tion is rather naive at the moment, and it is harder to debug. However, different
from CUDA, it has been devised to run on the widest range of hardware plat-
forms (including consoles and mobile phones), not limited to Nvidia ones, and
thus, it is the main candidate for becoming the reference platform for GPGPU in
the near future.
 The main effort when dealing with GPGPU is in the design of the algorithm.
The challenging task that researchers and developers are currently facing is how
to redesign algorithms that have been originally conceived to run in a serial man-
ner for the CPU, to make them parallel and thus suitable for the GPU. The main
disadvantage of particle-based methods is that they require a very large number
of particles to obtain realistic results. However, it is relatively easy to parallelize
algorithms handling particle systems, and the massive parallel computation capa-
bilities of modern GPUs now makes it possible to simulate large systems at inter-
active rates.

22.10 Future Work

Our algorithm for cloth simulation can be improved in many ways. In the CUDA
and OpenCL implementations, it would be interesting to exploit the use of shared
memory, which should reduce the amount of global accesses and lead to im-
proved performance.
 For future research, we would like to investigate ways to generalize this algo-
rithm by introducing connectivity information [Tejada 2005] that stores the in-
dexes of the neighbors of each particle. This data can be stored in constant
memory to hide as much as possible the inevitable latency that using this infor-
mation would introduce. By using connectivity, it would be possible to simulate
deformable, breakable objects with arbitrary shapes, not only rectangular pieces
of cloth.

378 22. GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA

22.11 Demo

An implementation of the GPU cloth simulation is provided on the website, and
it includes both the source code in C++ and the Windows binaries. The demo
allows you to switch among the computing platforms at run time, and it includes
a hierarchical profiler. Even though the source code has been developed for Win-
dows using Visual Studio 2008, it has been written with cross-platform compati-
bility in mind, without using any Windows-specific commands, so it should
compile and run on *nix platforms (Mac and Linux). The demo requires a ma-
chine capable of running Nvidia CUDA, and the CUDA Computing SDK 3.0
needs to have been compiled. A video is also included on the website.

Acknowledgements

The shader used for rendering the cloth is “fabric plaid” from RenderMonkey 1.82 by
AMD and 3DLabs. The author is grateful to Professor Ingemar Ragnemalm for having
introduced him to the fascinating world of GPGPU.

References

[Müller 2008] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. “Real Time
Physics.” ACM SIGGRAPH 2008 Course Notes. Available at http://www.
matthiasmueller.info/realtimephysics/index.html.

[Nvidia 2010] “NVIDIA CUDA Best Practices Guide,” Version 3.0, 2010. Available at
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_
CUDA_BestPracticesGuide.pdf.

[Tejada 2005] Eduardo Tejada and Thomas Ertl. “Large Steps in GPU-Based Deforma-
ble Bodies Simulation.” Simulation Modelling Practice and Theory 13:8 (Novem-
ber 2005), pp. 703–715.

