
EUROGRAPHICS 2020/ F. Banterle and A. Wilkie Short Paper

Interactive Assembly and Animation of 3D Digital Garments

O. Nylén1† P. Pall1† Y. Ishiwaka2 K. Suda2 M. Fratarcangeli3

1Deform Dynamics 2SoftBank Corp. 3Chalmers University of Technology

Figure 1: By using our tool, multiple layers of 2D patterns are placed around a virtual character and stitched together interactively.

Abstract
We present a novel real-time tool for sewing together 2D patterns, enabling quick assembly of visually plausible, interactively
animated garments for virtual characters. The process is assisted by ad-hoc visual hints and allows designers to import 2D
patterns from any CAD-tool, connect them using seams around a 3D character with any body type, and assess the overall
quality during the character animation. The cloth is numerically simulated including robust modeling of contact of the cloth
with itself and with the character’s body. Overall, our tool allows for fast prototyping of virtual garments, achieving immediate
feedback on their behaviour and visual quality on an animated character, in effect speeding up the content production pipeline
for visual effects applications involving clothed characters.

CCS Concepts
• Computing methodologies → Shape modeling; Mesh models; Collision detection;

1. Introduction

The manufacturing of clothes in the physical world relies heavily
on the use of two-dimensional patterns. These are templates cap-
turing the dimensions and the shape of a specific garment body
[Fas98]. The design of virtual garments in the apparel industry and
entertainment (games, movies) relies on similar mechanisms. We
present a novel system for semi-automatically sewing the contours
of triangulated patterns together, to create digital garments usable
in real-time design and animation. The system provides an user in-
terface for creating seams between the patterns in 3D. The cloth,
including the seams, is modeled as a nonlinear constrained particle
system according to Projective Dynamics [BML∗14], and solved
on the GPU in real-time using the Vivace solver [FTP16]. Over-
all, our system enables visual effects artists to quickly assemble

† Shared first authorship. These authors contributed equally to this work.

virtual garments for animated characters in real-time with perfor-
mance and visual quality suitable for performance-driven anima-
tion (Figures 1,6).

2. Related Work

One of the open challenges in computer graphics and engineering is
achieving interactive, physics-in-the-loop design solutions for prac-
tically relevant problems.

Cloth simulation. In the last decades, the dynamics of cloth have
been formulated according to different mechanical theories, in-
cluding mass-spring systems and continuum-based systems (e.g.,
see [MBT∗12]). While accurate methods are able to realistically
capture most of the cloth dynamics, they are computationally ex-
pensive. Recently, novel methods have addressed the gap between
accuracy and performance by mapping high-performance nonlin-
ear models [MMCK14, BML∗14] to the massively parallel GPU
[Wan15, FTP16, PNF18, WWF∗18].

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

O. Nylén, P. Pall et al. / Interactive Assembly and Animation of 3D Digital Garments

Garment and pattern design. In the context of garment design,
several state-of-the art academic frameworks have been presented.
A representative sample is sensitive couture [UKIG11], which pro-
vides a continuous, natural design modality of 2D patterns that
has also been expanded with machine learning to automatically
parse sewing patterns [BGK∗13]. Their system allows to seam-
lessly transfer edits to the corresponding 3D cloth model on a vir-
tual character, but it does not support self-collisions of the cloth
which makes it difficult to accurately preview the results, in partic-
ular when the character is animated. Other commercial frameworks
include CLO3D and Tuka3D, which are widely used in the indus-
try even though they have limited support for real-time character
animation.

3. System Overview

The physical 2D patterns used for clothes manufacturing do not
only express the shape of the garment patches, but also detail how
pieces of fabric are cut and sewn together. Popular file-formats for
digitally storing these patterns include CAD formats such as DXF
or plain PDF files. In some cases, these files include explicit in-
formation about how seams have to be created, but in general the
process of creating garments based on a sewing pattern is a task that
requires human expertise. Our system assists the designer in semi-
automatically sewing the contours of triangular meshes together, to
create digital garments and use them in 3D real-time simulation.
The system provides a user interface for creating seams between
objects in 3D (Sec. 4). The properties of the cloth can then be set
up using an ad-hoc painting tool (Sec. 5), and finally the garment
is assembled and animated including collision handling (Sec. 6).

4. Sewing System

In this section, we provide an overview of the user-interface func-
tionalities to stitch virtual patterns together.

Manual seam definition. Seams are defined as a one-to-one map-
ping between two ordered sets of n vertices each. The two sets of
vertices belong to the external contours CA and CB of two triangu-
lated patterns A and B respectively (Fig. 2 left). The workflow to
define the seams is divided into the following steps:

1. A vertex a1 belonging to the contour CA is selected as the first
endpoint of the seam on A.

2. By hovering the mouse, the shortest path from a1 to the vertex
currently nearest to the mouse cursor lying on CA is highlighted;

3. By clicking, the selected vertex an, is picked as the other end-
point of the seam. This implicitly defines the number of vertices
(n) in the shortest path along CA between a1 and an;

4. A vertex b1 belonging to the contour CB is selected as the first
endpoint of the seam on B;

5. By hovering the mouse, the system highlights the shortest path
composed by n vertices, lying on CB and starting from b1. There
are two potential options for selecting this path, going clockwise
or counter-clockwise from b1. Only one option is highlighted at
a time, and which one to highlight is determined by computing
the shortest distance between the mouse cursor and the two po-
tential endpoints bn. By clicking, bn is defined as the last point
of the currently highlighted path.

Figure 2: Left. A seam is defined between two patches. Right. Dis-
tance constraints with zero rest length bring the particles together.

Figure 3: Creating a seam with automatic suggestions.

Automatic seam suggestion. Often, sewing is defined between
two symmetric portions of contours delimited by corners, that is
where the angle φ between two neighboring edges lying on the
contour is smaller than a user-defined threshold. In this case, the
procedure to define a seam can be simplified as depicted in Fig. 3.
The user hovers the mouse over the contour of the triangulated pat-
tern, and the nearest portion of the contour delimited by two cor-
ners is highlighted. When the mouse button is clicked, the contour
is selected. The same is repeated for the other side of the seam.

Adapting to topological
change. It might occur
that a user wants to change
the polygonal resolution
(hence the topology) of a
triangulated pattern after
the sewing with other pat-
terns have been defined.
This is because the topol-
ogy of the mesh can influ-
ence the cloth dynamics,
and the user may want to
change it to achieve partic-
ular effects (e.g., wrinkly materials, like silk, require more triangles
than more rigid materials like cotton). When the mesh topology
changes, the seam will in general not be valid. To keep the seams
consistent, the system automatically redefines the seam for the new
topology. By comparing the positions of a1, an, b1 and bn in the
original mesh to their counterparts in the updated mesh, their in-
dices (and the indices of the vertices in between) are recomputed
using the list of contour points for the updated mesh.

Bending two-dimensional patterns. The 2D patterns may have
to be wrapped around objects, e.g., sleeves around arms. In this
case, the corresponding triangular mesh needs to be bent. If the
patch would be left flat, in fact, the seam lines would go through

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

O. Nylén, P. Pall et al. / Interactive Assembly and Animation of 3D Digital Garments

Figure 4: A flat sleeve patch is interactively bent and wrapped
around the arm.

the patch. To address this case, we bend the triangulated patterns
in 3D by interactively rotating them around an axis defined by the
user. The amount of rotation is scaled with the distance from the
center of the pattern, ie. vertices further from the center are rotated
more. Optionally, the user can also set a symmetry axis to bend the
mesh symmetrically, and a distance threshold from the rotation axis
for where the bending starts.

Seam simulation. The seams between corresponding vertices are
modeled as distance constraints with zero rest length. In this way, as
soon as the simulation starts, the vertices connected by a seam are
always kept at the same position during the animation. Since seams
influence the bending behavior of garments in a significant way
[PKST08], we also define hinge-edge constraint by the quadratic
bending energy [BWH∗06] on the overlapping sewn edges. Both
bending and distance stiffness can be defined by the user for each
individual seam.

As the simulation starts, the initial displacement caused by the
distance constraints is rather abrupt as the vertices are brought from
their initial to their "stitched" position in a very short time. To avoid
any instability, we increase the air damping until the position of the
corresponding vertices match. Once the final position is reached for
most particles (i.e., the residual error for the distance constraints is
very low), the damping is linearly interpolated to its initial value.
See the accompanying executable demo for a demonstration of this
mechanism.

5. Painting Per-Particle Parameters.

We implemented a painting tool to assign binary, integer and float-
ing point values to parameters of individual particles, e.g., the
amount of kinetic and static friction, mass and collision levels. A
collision level is useful to disable collisions in some areas of a gar-
ment and the colliders. By default, all simulated particles collide
with all the colliders. By assigning a different collision level to an
area of the garment and a different one to another area of the col-
lider, however, the collision tests with each other are disabled. This
is particularly useful when animating a motion-captured character.
The virtual avatar may have different shape than the human actor
and limbs may intersect and interpenetrate. By painting collision
levels, the system is less prone to errors (Fig. 5).

6. Collision System

In this section, we briefly depict our mesh- and self-collider, used
respectively for the collision of the cloth with itself, and for the

Figure 5: Painting per-particle parameters. The collision levels of
a pair of pants (green, a) and arms (red, b). By using collision
levels, the undesired collisions (c) are ignored (d).

collision between the cloth and the character. Collisions are tested
at the end of each time step (discrete collision detection), and we
employ a GPU-based implementation of a spatial hash map as data
structure to store the geometric primitives [THM∗03]. In this way,
we reduce the amount of accesses to video memory and fetch di-
rectly the colliding primitives without traversing bounding volume
hierarchies, while keeping the memory footprint contained.

Spatial hash map. Here, we briefly summarize the basic mecha-
nism of a spatial hash map. The reader is referred to [THM∗03]
for further details. For each time step, the hash map is rebuilt from
scratch.The hash index h is computed as:

h = |(ix× p1)⊕ (iy× p2)⊕ (iz× p3) mod n| (1)

where

ix = b
x
l
c iy = b

y
l
c iz = b

z
l
c. (2)

x, y and z are the scalar coordinates of 3D primitives, l is the length
of the cell side, p1, p2 and p3 are very large integer prime numbers,
and n is the size of the hash map. Note that Eq. 1 is slightly differ-
ent from the original formula in [THM∗03] allowing to avoid the
bounding box computation of the space domain. Since n is smaller
than the actual number of cells in the space domain, it may happen
that primitives in different cells may be stored in the same bucket.
To figure out which primitives belong to the same cell without com-
paring their positions, we associate a unique cell_id computed
as:

z× p1× p1 + y× p1 + x. (3)

The self-collider. For the collisions of the cloth with itself, we as-
sociate a sphere with each vertex and then the collisions are handled
using a discrete sphere-sphere test after each solver iteration, simi-
larly to [MMCK14]. The spheres are tested only if they are stored
in the same bucket in the hash map and have the same cell_id.
We found empirically that the best performance was obtained by
setting l in the hash map as the average length of the cloth edges.

The mesh collider. In the case of the mesh collider, used for test-
ing the collisions between the character and the cloth, each triangle
of the collider is inserted in the hash map. This is done according
to Alg. 1.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

O. Nylén, P. Pall et al. / Interactive Assembly and Animation of 3D Digital Garments

Algorithm 1: Building the hash map

1 for each triangle Ti do in parallel
2 Calculate AABB(Ti)
3 for each (cell j ∩AABB(Ti) 6= ∅) do
4 if ||t i

k− cell j||< l/
√

2, k=1, 2, 3 then
5 atomic insert i at h(cell j)

6 end
7 end

In step 1-2, the axis-aligned bounding box of each triangle Ti
is computed. Then, each cell that is intersected by AABB(Ti) is it-
erated over in step 3. In step 4-5, if one of the triangle vertices
t i
k,k = 1,2,3 is nearer than l/

√
2 to the center of the cell, then we

insert the triangle index i in the cell.

In the collision handling, each cloth particle is processed in par-
allel on the GPU. The particle is checked against each triangle in
the cell with the same cell_id. If the particle is found to be on the
opposite side of all triangles in the cell w.r.t. the triangle normal, a
collision has been found and we define a temporary inequality con-
straint to move the particle to the closest point on the surface of
the nearest triangle. The inequality constraints are removed at the
end of the time step. For friction, we use the Coulomb model as
in [MMCK14], considering the relative velocities between the tri-
angle and the colliding particles. To reduce the effect of tunneling
(an inherent problem with discrete collision detection), we linearly
interpolate the triangles of the collider mesh each time step instead
of simply using the input triangles which are updated once during
each frame.

When using a uniform data structure like the spatial hash map,
the performance is improved by using isotropic triangles with ap-
proximately the same size. In this way, each cell stores approxi-
mately the same number of triangles. This condition, however, is
not met by most of the character meshes. Therefore, we provide
the user with the possibility to remesh the collider mesh, which is
different from the input mesh used for rendering, using [LWL∗09].

7. Discussion and Limitations

Our system is particularly suitable for virtual productions where
massive amounts of content must be created quickly, like mod-
ern real-time film-making relying on performance-driven anima-
tion (which is currently taking over the visual effects industry). Our
system is fast, robust, and plausible enough to produce believable
cloth animations on different body types, allowing rapid prototyp-
ing and fast iterations (see accompanying video and demo). One
considerable limitation is the fact that the current sewing system
requires the number of vertices on both sides of the seam to be
equal. Our future research will focus on generalizing the stitching
functionalities, and implementing more accurate friction models,
continuous collision detection and precise nonlinear solvers.

References
[BGK∗13] BERTHOUZOZ F., GARG A., KAUFMAN D. M., GRINSPUN

E., AGRAWALA M.: Parsing sewing patterns into 3d garments. ACM
Trans. Graph. 32, 4 (July 2013), 85:1–85:12. 2

Figure 6: 2D triangulated patterns are stitched around a virtual
character. See the accompanying material for the animations.

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (July 2014), 154:1–154:11. 1

[BWH∗06] BERGOU M., WARDETZKY M., HARMON D., ZORIN D.,
GRINSPUN E.: A quadratic bending model for inextensible surfaces.
In Eurographics Symposium on Geometry Processing (2006), SGP ’06,
pp. 227–230. 3

[Fas98] FASANELLA K.: The Entrepreneur’s Guide to Sewn Product
Manufacturing. Apparel Technical Svcs, 1998. 1

[FTP16] FRATARCANGELI M., TIBALDO V., PELLACINI F.: Vivace: A
practical gauss-seidel method for stable soft body dynamics. ACM Trans.
Graph. (Siggraph ASIA) 35, 6 (Nov. 2016), 214:1–214:9. 1

[LWL∗09] LIU Y., WANG W., LÃL’VY B., SUN F., YAN D. M., LU L.,
YANG C.: On centroidal voronoi tessellation - energy smoothness and
fast compu tation. ACM Transactions on Graphics (2009). 4

[MBT∗12] MIGUEL E., BRADLEY D., THOMASZEWSKI B., BICKEL
B., MATUSIK W., OTADUY M. A., MARSCHNER S.: Data-driven es-
timation of cloth simulation models. Comput. Graph. Forum 31, 2pt2
(May 2012), 519–528. 1

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.:
Unified particle physics for real-time applications. ACM Trans. Graph.
33, 4 (July 2014), 153:1–153:12. 1, 3, 4

[PKST08] PABST S., KRZYWINSKI S., SCHENK A., THOMASZEWSKI
B.: Seams and Bending in Cloth Simulation. In Virtual Reality Interac-
tions and Physical Simulation, VRIPHYS (2008). 3

[PNF18] PALL P., NYLÉN O., FRATARCANGELI M.: Fast Quadrangu-
lar Mass-Spring Systems using Red-Black Ordering. In Virtual Reality
Interaction and Physical Simulation, VRIPHYS (2018). 1

[THM∗03] TESCHNER M., HEIDELBERGER B., MÃIJLLER M.,
POMERANETS D., GROSS M.: Optimized spatial hashing for collision
detection of deformable objects. Vision, Modeling, Visualization, VMV 3
(12 2003). 3

[UKIG11] UMETANI N., KAUFMAN D. M., IGARASHI T., GRINSPUN
E.: Sensitive couture for interactive garment editing and modeling. ACM
Transactions on Graphics (SIGGRAPH 2011) 30, 4 (2011). 2

[Wan15] WANG H.: A chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph. 34, 6
(Oct. 2015), 246:1–246:9. 1

[WWF∗18] WANG Z., WU L., FRATARCANGELI M., TANG M., WANG
H.: Parallel Multigrid for Nonlinear Cloth Simulation. Computer Graph-
ics Forum (2018). 1

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

