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Figure 1: Interactive animations with our novel GPU-based implementation of the Position Based Dynamics approach: highly-
detailed cloth model composed by 67K stretch constraints and 66K bending constraints.

Abstract
Position-based dynamics (PBD) is an efficient and robust method for animating soft bodies, rigid bodies and
fluids. Recently, this method gained popularity in the computer animation community because it is relatively easy
to implement while still being able to synthesize believable results at interactive rate. The animated bodies are
modeled by using a large set of linearized geometrical constraints which are iteratively solved using a sequential
Gauss-Seidel method on a single core CPU. However, when the animated scene involves a large number of objects,
solving the constraints sequentially one after the other makes the computation of the motion too slow and not
suitable for interactive applications. In this paper, we present a massively parallel implementation of position
based dynamics which runs on the local GPU. In the initialization phase, the linearized geometrical constraints
are divided in independent clusters using a fast, greedy coloring graph algorithm. Then, during the animation,
the constraints belonging to each cluster are solved in parallel on the GPU. We employ an efficient simulation
pipeline using a memory layout which favor both the memory access time for computation and batching for
visualization. Our experiments show that the performance speed-up of our parallel implementation is several
orders of magnitude faster than its serial counterpart.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality

1. Introduction

The interactive animation of soft and rigid bodies is still a
challenging problem for the Computer Graphics community.
The final users expect outstanding quality and for this rea-
son, the mathematical models defining the animated objects
have become more and more sophisticated through the years.

Position-Based Dynamics (PBD) [MHHR06] is a widely

spread method for interactively animating rigid bodies, soft
bodies and fluids. Its popularity is due to its robustness,
speed and easiness of implementation. In PBD, each ob-
ject is modeled as a particle system, and the relationship be-
tween particles is expressed using geometrical constraints.
There exists several kinds of constraints. For example, the
stretch constraint imposes the distance between two parti-
cles to an input distance. Another example is the tetrahe-
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dral constraint, which imposes the volume of the tetrahedron
formed by four particles to an input value. The set of con-
straints associated to an object forms a system which must
be solved for each animation frame.

The Gauss-Seidel method is particularly suitable for solv-
ing such systems of linear equations. However, the underly-
ing algorithm is sequential and thus unsuitable for parallel
implementations. Previous works exploited the sparsity of
the system to extract parallelism [KW03], or proposed paral-
lel approaches requiring synchronization primitives [CA09],
or aimed at the general case of sparse vector-matrix prod-
ucts [WBS∗13]. In this paper, we propose a parallel scheme
for the systems of linear, geometrical constraints employed
in Position Based Dynamics for modeling animated objects,
taking advantage of commodity parallel local architectures
such as multi-core CPUs and GPUs.

The main feature of the graphics processing units (GPUs)
is their high computational throughput. They offer a great
speed-up allowing the execution of thousands of lightweight
threads in parallel according to the SIMD (single instruction
multiple data) paradigm: the threads execute the same in-
struction on different data. The introduction of the NVIDIA’s
Compute Unified Device Architecture (CUDA) [KH13] al-
lowed to abstract from the underlying graphics hardware and
use GPUs for general purpose programming (GPGPU).

In the initialization phase of our method, the geometrical
constraints are divided in independent clusters using a fast,
greedy coloring graph algorithm. Then, during the anima-
tion, the constraints belonging to a cluster are solved in par-
allel on the GPU. We employ an efficient simulation pipeline
using a memory layout which favor both the memory access
time for computation and batching for visualization.

The presented method allows for real-time animations
of complex deformable bodies. To demonstrate the perfor-
mance gain in practice, we present animation of deformable
bodies, like cloth and volumetric objects. We compare be-
tween implementations on the single core CPU, multi-core
CPU and GPU. We observe that in some cases the perfor-
mance speed up of the GPU solver is 10x w.r.t. the other
platforms.

Our contributions:

• A novel algorithm which divide the set of constraints in
independent clusters using a greedy coloring algorithm;
all the constraints are then solved using a GPU-based par-
allel Gauss-Seidel method.
• A novel GPU data structure storing all the objects in a sin-

gle particle system. The data structure is used for both the
animation and visualization minimizing the frame update
time.

This parallel implementation allows the animation of soft
bodies composed by tens of thousands of constraints in real-
time.

2. Related Work

Position Based Dynamics has been employed in a broad
range of applications from knot simulation [KPFG07] to
face animation [Fra12] and automatic body skinning [DB13,
RF14]. Its original formulation considered just soft bodies,
like cloths and inflatable balloons. Recently several works
have been proposed to include both rigid bodies [DCB14]
and fluids [MM13]. An extensive description of this method
and its derivatives can be found in [BMOT13]. Popular avail-
able implementations are included, among others, in the
open-source Bullet physics engine [Cou10] and in the pro-
prietary PhysX SDK [NVI13].

One of the main issues of PBD is the intrinsic slow con-
vergence of the employed serial Gauss-Seidel solver. The
geometrical constraints are solved one by one several times
in an iterative way (see Sec. 3). Each time an iteration is
completed, the difference between the current solution and
the optimal one decreases. In order to reach a satisfying so-
lution, usually just a small number of iterations is needed
(2− 4), which is suitable for interactive applications. How-
ever, for complex scenes where a substantial number of con-
straints is involved (e.g., several hundred of thousands), the
convergence is too slow, the number of iterations increases
and the performance is not suitable anymore for real-time
animations.

In [M0̈8], a hierarchical ad-hoc position-based approach
for clothes is devised in order to accelerate the convergence
of the solver. In [BB08], a red-black parallel Gauss-Seidel
schema is used for animating inextensible clothes using a
force-based system. While providing excellent performance,
this method is restricted to meshes with a regular grid topol-
ogy. The mesh is subdivided into strips of constraints. The
strips that have no common particle are independent from
each other and can be solved in parallel. Both the solvers
presented in [M0̈8] and [BB08] lack the generality needed
to simulate generic, volumetric objects with arbitrary topol-
ogy.

3. Position Based Dynamics

In the Position Based Dynamics approach, a soft body is rep-
resented by a set of N particles and a set of M constraints.
Each particle i is defined by its position pi ∈ R3. A geo-
metric constraint j is a mathematical relationship between
particles C j(p) = 0. When an external force is applied to
the particles, like the gravity, or some particles are displaced
for some reason, e.g., by user manual interaction, the geo-
metrical constraints may be not satisfied anymore. For each
animation frame, the system of constraints must be always
satisfied, or at least, the error between the current and the
optimal solution must be small enough to produce believ-
able motion.

During the simulation, if the particles configuration pk in
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Figure 2: Left: An input surface mesh, composed by 34K vertices and 70 K faces. Middle: The corresponding tetrahedral
mesh composed by 4K vertices and 16K tetrahedrals obtained using [BDP∗02]. Right: Cross-section view showing the internal
tetrahedrons of the input mesh.

a state k does not satisfy the set of constraints, then the it-
erative solver projects the particle positions in a valid state
by finding a displacement ∆pk such that C(pk +∆pk) = 0.
All the constraints in our method are functions Ci(p) = 0. In
this context, the constraints express a relationship (usually
geometrical) between the particles. Projecting a set of par-
ticles according to a constraint means moving the particles
such that their positions satisfy the constraint. The motion of
the particles is computed inside a simulation loop. The par-
ticles are initially at rest state. This state can be perturbed by
external conditions such as a force, like the gravity. The ob-
jective of the solver is to update the positions of the particles
in order to keep the system of constraints satisfied.

Given p, we want to find a correction ∆p such that C(p+
∆p) = 0. This system of non linear equations is linearized:

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0 (1)

and then iteratively solved. If ∆p is chosen to be parallel to
∇pC(p) (which is perpendicular to rigid body modes), then
both linear and angular momenta are conserved. For a full
mathematical description on how to solve this system, the
interested reader can refer to [MHHR06,BMOT13]. For con-
sistency, we briefly report the equations for solving distance
and volume constraints in the following section.

3.1. Geometric Constraints

Starting from an input mesh like the one depicted in Fig. 2,
we create one particle pi for each vertex, one stretch con-
straint for each edge (including the internal ones), and one
volume constraint for each tetrahedron. These constraints are
described in the following subsections.

3.1.1. Stretch Constraint

We define one stretch constraint for the particles (p1,p2) at
the end points of each edge of the mesh, including the edges

of the internal tetrahedrons:

C(p1,p2) = |p1−p2|−d = 0 (2)

where d is the rest length of the edge.

Given the configuration
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3.1.2. Tetrahedral Volume Constraint

We define one volume constraint for the particles
(p1,p2,p3,p4) at the corners of each tetrahedral of the mesh:

C(p1,p2,p3,p4) =
1
6
(p2,1×p3,1) ·p4,1−V0 (5)

where pi, j is the short notation for pi− p j and V0 is the
rest volume of the tetrahedral. The projection of each particle
belonging to a tetrahedron is:
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where s is the scaling factor:

s =
1
6 (p2,1×p3,1) ·p4,1−V0

Σ4
i=1 | ∇piC(pi) |2

(10)

and the gradients with respect to the particles are
[MHHR06]:

∇p2C(p2) =
1
6
(p2,1×p3,1) (11)

∇p3C(p3) =
1
6
(p3,1×p4,1) (12)

∇p4C(p4) =
1
6
(p4,1×p2,1) (13)

∇p1C(p1) =−(∇p2C(p2)+∇p3C(p3)+∇p4C(p4)) (14)

4. Parallel Iterative Gauss-Seidel Solver

We consider scenes where thousands of constraints must be
solved in real-time at least once every 16 ms to guarantee
interactivity. During the animation, these constraints may be
not satisfied due to external conditions, for example the user
interacts with the model and move arbitrarily a set of parti-
cles, or an external force like gravity or wind is applied.

To solve the system, PBD employs a Gauss-Seidel solver.
The constraints are solved iteratively one after the other,
from the first to the last one. Then, the process starts over
again and it is repeated a number of times, nits. Increasing
nits leads to more precise solutions of the systems, sacrific-
ing performance. Usually we employ a number of iterations
between 2 and 24, depending on the topology of the system.

To speed-up the solving process, we implemented the
Gauss-Seidel solver in a parallel fashion. We define a graph
with a node for every constraint in the system. Two nodes
of the graph are connected if the corresponding constraints
share at least one particle. Each color corresponds to a clus-
ter of constraints. We solve all the constraints belonging to a
cluster in parallel: we instantiate a thread for each constraint
within the same cluster. This way, the system is solved in less
steps than the sequential approach. Fig. 3 depicts this mech-
anism for a simple mesh composed by stretch constraints
(Fig. 3.Left). The corresponding colored graph is shown on
the right together with the corresponding clusters, one for
each color.

The graph coloring problem, in its simplest form, involves
the assignment of colors to each node in the graph, such that
two connected nodes do not share the same color. In other
words, given a graph G(V,E) and a set S of colors, a proper
coloring is a map c : V → S s.t. ∀〈u,v〉 ∈ E,c(u) 6= c(v).

Finding the minimal amount of colors for coloring a
generic graph G (the chromatic number) is known to be
NP-hard [GJ79]. Usually, efficient greedy heuristics are em-
ployed to find an approximate solution. A widely-known ap-
proach is the following: let v1,v2, . . . ,vn be an ordering of
the vertices of the graph G = (V,E), for k = 1,2, . . . ,n the
sequential algorithm assign vk to the smallest possible color.
In general, an arbitrary ordering may perform very poorly
but it is possible to show that, for any G, there exists at least
one ordering of vertices for which the sequential algorithm
produces an optimal coloring.

In our system, we used the smallest-last ordering defined
in [MB83,CM83], which guarantees a coloring with at most

max{1+δ(G0) : G0 is a subgraph of G } (15)

colors where δ(G0) is the smallest degree of the vertices in
G0.

5. Implementation

During the design of an algorithm for the GPU, it is criti-
cal to minimize the amount of data that travels on the main
memory bus. The time spent on the bus is actually one of
the primary bottlenecks that strongly penalize the perfor-
mance [nvB13]. In fact, the transfer bandwidth of a standard
PCI-express bus is 2-8 GB per second, while the internal bus
bandwidth of a modern GPU is approximately 100-150 GB
per second.

We designed our system in order to minimize the amount
of data which travels on the PCI bus and keep the data on the
GPU as much as possible. In the initialization phase, we load
all the data required for the animation on the video memory.
Then, during the animation phase, we update the data struc-
tures directly on the GPU. In this way, the CPU is not in-
volved in the animation process (besides being responsible
for calling the GPU kernels), and any data exchange using
PCI bus is avoided.

In order to advance the animation step, the current state
of the particle system must be stored in the video memory
of the GPU. The current state is given by the following at-
tributes:

1. the current position of each particle;
2. the previous position of each particle;
3. the external forces influencing the particles;

A different static array is created for each attribute during
the initialization phase. Then, each array is loaded into video
memory. Each array stores the attributes for all the particles.
The size of each array is equal to the size of an attribute (4
floating-point values) multiplied by the number of the parti-
cles.

We employ the so-called ping-pong technique [Dro07]
that is particularly useful when the input of a simulation step
is the outcome of the previous one, which is the case in most
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Figure 3: Left. A connected mesh of particles. Each edge corresponds to a stretch constraint. Right. Constraint graph. Each
node corresponds to a constraint and two nodes are connected if the corresponding constraints share at least one particle. Nodes
of the same color forms a cluster of constraints which can be solved in parallel.

of the animations based on particle systems. The basic idea
is rather simple. In the initialization phase, two buffers are
loaded on the GPU for each attribute, one buffer to store the
input of the computation and the other to store the output.
When the computation ends and the output buffers are filled
with the results, the pointers to the two buffers are swapped
such that in the following step, the previous output is con-
sidered as the current input.

The current results data are then stored in a Vertex Buffer
Object (VBO), which is employed to render the current state
of the deformable object; in this way the data never leaves
the GPU achieving maximal performance. This mechanism
is illustrated in Fig. 4.

Figure 4: The ping-pong technique on the GPU. The out-
put of a simulation step becomes the input of the following
step. The current output buffer is mapped to a Vertex Buffer
Object for visualization.

6. Results

We tested our proposed technique on three different scenes
(Fig. 5). The first scene represents fixed cloth modeled using
stretch and bending constraints under the influence of wind.
The second scene represent a stack of clothes which falls un-
der the gravity force and collides with a capsule. The third
scene represents a volumetric character modeled using both
stretch and tetrahedral volume constraints and deformed by
user intervention. The tetrahedral meshes used in the exper-
iments are obtained using [BDP∗02].

To advance the animation, we used a 10 ms time step and
16 iterations per frame. We measured the time performances
on the set of test scenes on a mass-market laptop equipped
with an Intel i7 2.30 GHz processor (4 cores), 4GB RAM
and a graphics card GeForce 610M with one multiprocessor
and 2 GB VRAM.

We implemented standard Position Based Dynamics on a
single core CPU, and the parallel version both on multithread
CPU and GPU. The code of the kernels for solving the con-
straints is the same for each kind of platform. We used In-
tel Thread Building Blocks technology for implementing the
multithreaded version on the CPU. The mean computation
times are reported in Table 1. The corresponding animations
are shown in the accompanying video.

7. Conclusions

In this paper, we introduced an early implementation of a
massively parallel solver which can be used to speed up the
computation of the popular Position Based Dynamics ap-
proach. It allows to simulate soft bodies, both cloths and vol-
umetric ones, and it can be easily extended to involve rigid
bodies, fluids and the two-way interactions among them. Ta-
ble 1 shows the computational superiority of the GPU (even
with a single multiprocessor!) against single and multi core
CPUs.
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Figure 5: Test beds for our experiments. The number of constraints involved into the animation is reported in Table 1. Left.
Fixed cloths under the influence of wind. Cloths are modeled with stretch and bending constraints. Middle. Cloths falling under
the gravity force and colliding a capsule. Right. Volumetric deformation of a volumetric body.

particles constraints/colors iterations avg. computation time [ms]
stretch blending tetrahedral CPU Single CPU Multi GPU

scene 0 4800 13764/8 13140/8 / 16 151.6 102.1 40.6
scene 1 14400 41296/8 / / 16 104.2 48,8 9,7
scene 2 10452 52387/73 / 32087/142 16 256.4 122,1 82.0

Table 1: Quantitative results of our experiments on three different scenes depicted in Fig. 5. For each scene, it is reported
the number and type of constraints. For each type of constraint, it is reported the number of colors, which corresponds to the
independent clusters in which the constraints are grouped. We run the animations on a single core CPU, a multi core CPU and
a GPU with a single multiprocessor and report the average computation time over 500 frames.

The performance of the GPU solver is bounded by the
number of times the kernels are run, rather than the number
of particles involved into the animation. This is depicted in
the case of scene 1 in Table 1, where the performance speed-
up of the GPU is higher than in the other cases because, de-
spite the big number of particles, the number of clusters is
smaller than in the other cases.

A kernel call is required for solving each cluster. Each
kernel is run a number of times equal to the number of clus-
ters multiplied by the number of iterations. The number of
clusters is equal to the number of colors required to color
the graph constraint. The problem of maximizing the perfor-
mance can be thus expressed as finding the minimal number
of colors required to cover the graph, which is known to be
NP-hard [GJ79].

We noted that the minimal number of colors is lower
bounded by the size of the biggest clique in the constraint
graph. In the future, we would like to explore the possibility
to color the constraint graph with an arbitrarily low number
of colors, allowing minimal changes in the topology, in order
to maximize the performance on the GPU.
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